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THE REF~CTION OF A SHEAR WAVE IN A NON-LIN~RLY ELASTIC AND 
ELASTOPLASTIC HALF-SPACE* 

A.G. BYKOVTSEV 

Dynamic equations describing antiplane deformation in a non-linearly 
elastic medium are studied. Selfsimilar solutions are analysed for the 
case when the displacement rates and stresses depend on two variables 
3 = 21 - et, y = 2,. In the limiting case, when the r--y -plot for a non- 
linearly elastic material is the same as that for a perfect elastoplastic 
material, a solution is constructed for the problem of refraction of 
plane-polarized plane waves of pure shear in a non-linearly elastic 
half-space. The results obtained are compared with the solution constructed 
earlier /l/ in which the system of Prandtl-Reuss equations was used to 
study the refraction of pure shear waves in an elastoplastic half-space. 

Selfsimilar problems in which the displacement rates and stresses 
depend only on the ratio of the coordinates, were studied in /2-7/. 

1. Let us consider the dynamic problem of the theory of complex shear in a non-linearly 
elastic medium. In a Cartesian coordinate system 51 the displacement vectors u and displacement 
rate vectors w are directed along the x a axis, and depend only on rr,xs and the time t. All 
components of the stress tensor except IC, = U1~(Xf, X,, t) and $ = at8 (zr,X$, t) vanish. In this 
case the equations of motion have the form 

2 +- -$p+o tw 
Let us consider the selfsimilar solutions of (1.1) depending only on X=X1 - ct, y = ZI. 
Therelations ofthenon-lineartheoryofelasticity forantiplanedeformationst&e the form 

~r=f(Y)u,x, ~z==fW~,w Y=d(~,x)5i(~.,)B WI 

The relations of the deformation theory of plasticity /8/ are the same as (1.2) under an 
active load Y,t> 0 and differ from them during unloading when y,,<O. According to deformation 
theory I and y are connected by a linear relation during the unloading. 

From (1.1) and (1.2) it follows that the displacement u satisfies the non-linear wave 
equation 

;~(Y)(.*sr -f-u,,*)+ f'(y)(u,,(%? + 2u,%&x~,Y i- ~,w(m,v)")- Ypcpu.~xx=~ (1.3) 

The last relation of (1.2) will be satisfied identically if we put 

u,* = y sin 8, uay = y cos 0 (1.4) 

Substituting these expressions into (1.3) and writing the resulting equation together 
with the conditions of compatibility of deformations, we obtain the following systemof equations 
for determining Y and 8: 

b tf (y) + yf’ (y) - ~4 sin 6 + y.v (f (y) -t- yf’ (Y) CoS @ + 
8.xY (f (Y) - PC*) CO8 0 - @,vY f (Y) sin 0 = 0 

y,cos 0 - y,” sin 8 - 0,= y sin 8 - 6,, Y cos 9 = 0 

System (1.5) is hyperbolic when 

f (y)(pcS - Yf’ (Yf i- f fY)f + Yf’ (Yv) PCB cd 0 = r2 > 0 

(1.5) 

The characteristics and the relations along them in this case have the form 

dy (yf’ (y) sin% + f (y) - pc*) = dx (yf’ (y) sin 8 00s e f I*) IW 

de? (pc* ~09x1 -f(y)) + dy (pc” cos 8 sine f r) = 0 (1.7) 

2. Let us consider a limiting case, when the r -y plot for the non-linearly elastic 
material is the same as that for a perfectly elastoplastic material, i.e. when the function 

*PrikZ.Matem.Mekhan.,50,3,490-497,1986 

373 



374 

f(v) has a kink point. In this case we shall use the relations obtained to study the 

Fig.1 

refraction of plane-polarized shear waves passing from an elastic half-space with parameters 

PI? pit a1 = I/& into an elastoplastic half-space (EPH) with parameters ptr pa,a, = I/CL2/Pa,k. 
In the case of the limit model of a non-linearly elastic body in the elastic domain f h9 = 
p = const, and in the plastic domain the yield condition 2rZ ~~~~ = kz must hold. From this 
it follows that f(y) = ky-I. 

Let a plane wave OA (Fig.1) impinge on the boundary surface y=Q.. The equation of 
the incident wavefront at any instant of time has the form ycoscpr +ssincy, = -or = const, and 
we have the following relations behind the incident wavefront (ml is the angle of incidence) 

zi = zi (@I), i = 1,2, w = wa (q), w = u,t = -cy sin 8 (2.1) 

The equation of the reflected wavefront has the form ycoscpr- x sincp, = oS = COIlst. The 
solution behind the reflected wavefront in the elastic half-space is obtained by combining 
the solution (2.1) with the solution for the reflected wave, which has the form 

zi = zi (r&J, i = 1, 2, w = w, (0,) (2.2) 

The equation of the refracted wavefront at any instant of time has the form b, co9 cp + 
5 sin cp = 0 = const. We have the following relations behind the refracted wavefront in E: 

TV = ri (o),l i = 1, 2, w = w (0) (2.3) 

where (cp the angle of refraction such that a,sincp = a,sin%). 
From (l.l), (2.3) it follows that in the elastic domain behind the refracted wave 

rl = pzy sin 8, z2 = pa ctg cpy sin 0 (2.4) 

From (l.l), (2.1), (2.2) we have 

71 (Oi) = - plC-‘Wi (Oi), 72 (Oi) = (- I)< Plc-’ ctg (Plwi (Oi) (2.5) 
i=l,2 

At the boundary y = 0 the normal stress zB and displacement rate w are assumed to be 
continuous; this implies that 

w (x) = WI + we, Q (2) = W-'ctg 'pl (% - 1%) (2.6) 

wI = wI(-z sin cp,), i = 1, 2 

Here w(z) is the rate of displacement and Z*(Z) is the stress at the boundary in the 
EPH. Eliminating from Eq.(2.6) the function w,(- ssin cp,), we obtain the boundary condition 
for the EPH in the form 

2 w1 (- z sin ml) = w (I) - cpL1-ltg 'plz, (J) (2.7) 

Henceforth we shall assume that the function wr(wr) is given, i.e. the profile and 
intensity of the incident wave are known. 

Let us consider the refracted wave in the EPH. The material is assumed to be at rest 
w = ~1 = rr = z,= 0, in front of the refracted wavefront CC, i.e. the material will be in the 
elastic state near OC. We have y = 0 on the line OC, and from (1.6), (1.7) we obtain 

5 - x y = const, y (co9 0 - x sin 0) = 0 (2.8) 
5 + xy = const, y (cos e + x sin 6) = const 

(X = 1/M’ - 1, M = cazml is the Mach No. 
(2.9) 

The constant on the right-hand side of relation (2.8) is the same for all characteristics, 
and should therefore be regarded as the integral of the equation of motion in the elastic 
region. Using relations (2.8), we can write the condition at the boundary (2.7) in the form 

2wl(--zsinml)=-ceysine(l+*) (2.10) 
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From the integrals (2.8), (2.9) it follows that in the elastic domain, 0 has a constant 
value, and y remains constant along the characteristics (2.9). This implies that the yield 
point will be attended at once along the whole characteristic , provided that it is attained 
at least one point. 

The condition for attaining the yield point has the form 

zl" + rza = k= = pzZy2, y = f kp,-’ (2.11) 

Substituting the second relation of (2.11) into (2.4), we obtain 

sin 8 = f sin cp (2.12) 

Before continuing with the construction of the solution, we must decide on the choice of 
sign in expressions (2.11), (2.12). This can be done as follows. In the rectangular coordinate 
system xOy the displacement u and displacement rate win the EPH (Fig.1) for the problem in 
question, and we have w = u = 0 at the point 0. Consequently, when x<p, we have au/ax< 
0 and relations (1.4) imply that y and sin8 are opposite in sign. We find from (2.4) that 
z1 < o,z, < 0. At the point D, at which the yield point is first reached, we have 'cl = ksin 8, 
z, = k cos 8. Therefore in the elastic domain 0 = n + cp and the plus sign should be chosen 
in relation (2.11). 

From (2.10)-(2.12) it follows that the material will remain elastic between the character- 
istics OC and DE (Fig.1) until the following equality is reached at the same point D at the 
boundary: 

(2.13) 

The material is in the plastic state to the left of the line DE and Eqs.(l.6), (1.7) yield 

(2.14) 

(2.15) 

Since on the line DE w = k (p2p2)-‘/*, 0 = JI -j-q and the characteristics of (2.15) intersect 
the line DE, the constant appearing'intherelation along the characteristic of this family 
is the same for all characteristics. Therefore, the second equation of (2.15) should be 
regarded as an integral of the equationsofmotion in the plastic domain. From the integrals 
(2.14), (2.15) we find, that along every characteristic of the family (2.14) 0 and W remain 
constant, and from this it follows that the characteristics of (2.14) are rectilinear. Thus 
we have 

y A W 
10 -- 

--in@ case -zsinO=const 
) 

Z (0, e) - 2A fi = const 

(2.16) 

The characteristics (2.16) intersect the lines DE and are inclined to the x axis at an 
angle '4, for which 

Thus we have for the equations of motion in the plastic domain on the line DE the Cauchy 
problem. Solving this problem we determine w knd 8 between the characteristic DE in the 
elastic domain, and the characteristic DF in the plastic domain where w = k (p,, pp. 8 = 
n i ‘p. 

Eliminating the function 1~' from the boundary condition (2.7) with the help of the integral 
(2.15), we obtain 

2~~ (- x sin cp,) = W (fJ) - cp;’ tg cp,k cos 0 (2.17) 
ntw 

w (0) = ( 1 zavt&B + e)” 

Let e = e1 be the root of this equation. Then from (2.15) we obtain the value of w= 

w (0,) at the boundary y=O. 
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The values of ti and u: remain constant along the line 

y (A I/* - cos 0, 
) 

-(s - aiv(Ol))sin& = U (2.IS) 

(XN is the coordinate of the point on the boundary at which N = 0,). The angle of inclination 
of this characteristic to the 5 axis is connected with O1 by the relation 

-1 
cost?, 

In order for the solution constructed to exist, it is necessary that the angle Y, should 
increase when the point N moves along the I axis, and that condition of loading should hold 
in the plastic domain. The condition of loading in the present case has the form 

(2.19) 

(2.20) 

i.e. 

Using the integral (2.151, we can write the condition of loading in the form 

J&g81 -I- [A f-- sin (I (e,, n + ‘p) + A t’i@J-l) > 0 (2.21) 

the condition of loading will hold as long as ae,/&> 0. 
Differentiating relation (2.19) with respect to z, we find that the angle WI will 

increase as we move along the x axis, provided that 

[ 
3 case, -- - 2 f-- einCJ1 

(+z(e.x+IP,f)I;i?)]$>O (2.22) 

i.e. the condition that Yl increases will hold as long as ae,iox > 0. 
Since 8, satisfies Eq.(2.17), differentiating the latter with respect to w1 yields 

ZAz$f- Slil @I= 

From this we find that the quantity 0, decreases as UQ increases, and this implies that 
@,/a~> 0 and conditions (2.21), (2.22) will hold as long as wl(ol) increases as o1 increases. 
We note that in this case the monotonicity of the functions appearing in (2.17) implies that 
the latter will always have a unique solution when 0~ [n,n -i- cpl. When k$ decreases, it can 
reach the value n when the characteristic (2.14) in the plastic domain becomes parallel to 
the x axis. This will happen when the amplitude of the incident wave urr attains the vaiue 

k w,o ;= P 

z&f-GE 
(2.23) 

Let this value be reached at the point It, and let wl(oX) increase from that moment. 
Then the line JfP will become a characteristic and we shall have on it 

e,=n,zr=o, TZ=-k, w=w* 

The solution in EPH is determined by the boundary condition ontheline OM. The line 
MPis a stationary line of discontinuity on which the displacement rates undergo a jump, 
and the dynamic conditions of compatibility on the surface of strong discontinuity imply 
that the stress T% is continuous on the line MP. 

In the case when K+(o,),>w,~, the condition of loading (2.21) holds also in the plastic 
domain, but special attention should be given to this condition when y= 0, i.e. in the 
slippage zone. The condition of loading holds on the stationary line of velocity discontinuity 
when x3,> w, where zu, is the displacement rate in the elastic domain, and z+ in the plastic 
domain. From (2.6) and (2.15) it follows that the condition of loading holds when 

2w{-- x sin ml) - k (jlp,pl cos tp$l > w* (2.24) 

Thus, if the profile of the incident wave does not exceed UQ*, the condition of loading 
will hold as long as the function wl(ol) increases, and unloading begins when the maximum 
value of the profile has been passed. If the profile of the incident wave exceeds wr', then 
slippage (discontinuity of displacement) occurs in the corresponding zone at the boundary 
separating two media. In this case the condition of loading will hold as long as the profile 
exceeds wlo, and unloading will begin when the profile of the incident wave becomes smaller 



than u+". 
We note that the slippage zone represents, according to the terminology of the mechanics 

of fracture, a slippage crack moving along the boundary separating two media. The displacement 
u becomes strongly discontinuous in the slippage zone. The fact which appears to be essential 

is, that the zone of slippage , its formation and development, are all described by the equations 
of dynamics of elastoplastic media, without bringing in the physical laws of the mechanics 
of fracture. The stresses and deformations at the crack tip are finite. Thus the model of 
a perfectly elastoplastic body enables us, at least in the case in question, to carry out a 
closed investigation of the development of the slippage cracks as surfaces of stationary 
discontinuities. 

It is interesting to compare the solution constructed with the 

5 , results obtained in /l/, where the problem of the refraction of plane- 
polarized, plane shear waves at the boundary separating the elastic 
and elastoplastic half-spaces was solved using the system of Prandtl- 
Reuss equations. When y<N;I, the solutionsbasedon the model of a 
perfectly elastoplastic body (the theory of plastic flows) are the 

3 same as those based on the limit model of a non-linearly elastic 
body (the deformation theory of plasticity), therefore the elastoplastic 
boundaries are also the same in both cases. The difference appears 
in the plastic zone, and this leads to different conditions of slippage. 

I For a perfectly elastoplastic model the condition has the form /l/ 

Fig.2 

k 
p1°=21/x 

The dependence of the quantity ~~=(21/i;;7;C~~~~-(eos~)-~)~aJ(p,~,) on the angle of refraction 
cp is shown in Fig.2, according to the perfect elastoplastic body model (curve 1) and the limit 
model of the non-linearly elastic body (curve 2). 

It should also be noted that in case of slippage the coordinates of the point of the body 
+,, from which the unloading wave begins to propagate, obtained using the above models, are 
also different. 

3. Let us consider the propagation of the unloading wave (UW). We note that if the 
unloading follows the model of a non-linearly elastic body, the angle 3 increases as wl(oz) 
increases, and the angle of inclination of the characteristics (2.14) to the z axis will 
increase in the unloading zone and a shock DW will form. 

Henceforth, we shall proceed according to the deformation theory of plasticity, i.e. we 
shall assume that the unloading takes place linearly and PL is the line separating the plastic 
domain from the unloading zone. The method of determining the initial velocity of DW used in 
/l/ can be generalized and used to find the velocity of the Uw at any of its points. 

The relations (Z-14), (2.15) which hold in the plastic domain, can be written in the form 

e 

4A1/5= 

(c, = I/main6 (AJZ- f-mcose)-r is the velocity of plastic waves. 
The boundary condition (2.17) has the following form at the boundary: 

(3.1) 

(3.3) 

Differentiating Eqs.(3.2) and (3.3) with respect to I with y=O, we obtain a system of 
equations for determining &I (z, O)&, fJ(--I), and the system yields 

f8’(--+) = 2R1 (-tsin qQ P (Cl (3,O)) 

F(fl(z,O)) =[~~*(e(s,O))-_t~rplksin6(t,O)x 

(3.4) 

J-sine(r,O)]-l* P,(B(..O))=qt _sif (=, ) +2@ 

R, f-zsin pI) = --sin h~~'(-z sin w) when 3 >zp 
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Differentiating Eq.(3.2) with respect to 2 with Y-Y(z), i.e. on the UW, we obtain 

Similarly, from (1.6), (l-7), (2.7) we find the following relations hold in the unloading 
zone (ce is the velocity of elastic waves): 

(o+= -22p&c& @_=2c7, (3.5) 

Ra(---x&n 'pl) = -sin ip,w’ (-zsin mp,) 
g = plai CO9 mr. c, = - (Ma - Q-*1* 

when 5 <+; d= p*cos 'p 

Weassume thatontheUWy= y(s) the stresses and displacement rates are continuous, and 
in this case we have 

(3.6) 

Differentiating the system of Eqs.(3.6) with respect to z and eliminating the quantities 
ae/az + c*ae/ay, fs' (y (z)/cp - z) from the equations obtained, we obtain 

with 
with 

(3.7) 

(3.8) 

(3.9) 

(g- d)sine [(g+ d)sinm]-' 
1 

The last equation of (3.9) was obtained from (3.5) for fi(z) by changing the argument. 
The system of Eqs.(3.7)-(3.9) obtained represents a system of differential equations 
divergent arg~ent,fordete~ining~e~~ = y(z).It can be solved by numerical methods 
the following initial conditions: 

Y (2,) =O* Y' (Q =co*, fl (IY) =A, f< (z,) =fi'. fi VP) = 14 
fi’ (a$ = fr’ 

Here co* is the initial velocity, DW, and the algorithm for its determination is known 

/1, 9/. Since the stresses and displacement rates are continuous on DW, therefore the 
quantities fx,fil, fz.fz’ can be found from the solution constructed above in the region of 
plastic loading. 

Moreover, the system of Eqs.(3.7)-(3.9) can be used to determine the velocity of UW at 
any of its points (2, Y, (2)). Eliminating the function fl’ (z + Y (r)/c,) from the Eqs.(3.7)-(3.9), 
we obtain 

(3.10) 

We will assume that the iJW is constructed from the data of an arbitrary point at which 
the velocity of UW is sought. Thus the quantity Y= Y(z) is known and (3.10). is a linear 
equation for determining c*, Therefore, the IJw can be constructed by determining E* from 
(3.10) at a sequence of points beginning with z,,, and setting up the corresponding segments 
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of the UW by means of the rectilinear segments whose angle of inclination to the z axis is 
given by c*. The value of the function fi~(z--y(z)/~,), necessary for constructing each successive 
segment of the UN, is found with help of the relations (3,5), (3.8) from the results of 
constructing the preceding segments. 

Using Eqs.(3.2), (3.5), we can write the function f~(z-y(~)/c~) in the form 

fn (r + W/e,) =I --)r, (4A'c,)-' F10 (8 (5, 0)) - ckcos 0 (3.11) 

Differentiating (3.11) with respect to z‘ and remembering that a/&<0 in the unloading 
zone, we find that f,'(~-(~-~~)cd~~)~Oin this zone. Therefore, from (3.10) it follows that 
G(+<O, G(c,)>O, which means that the root of Eq.f3.10)@ satisfies the condition IcpI<[c,l< 

1e.I. ?%us we have shown that the velocity of UN at any of its points is not less than the 
rate of propagation of the plastic waves, and does not exceed the rate of propagation of 
elastic waves. Therefore the velocity of UW and hence the UW itself, is determined uniquely 
at every point. 

The method of characteristics /9/ can be used instead of the methods given here in 
constructing the UW. 
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