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THE REFRACTION OF A SHEAR WAVE IN A NON-LINEARLY ELASTIC AND
ELASTOPLASTIC HALF-SPACE”

A.G. BYKOVTSEV

Dynamic equations describing antiplane deformation in a non~linearly
elastic medium are studied. Selfsimilar solutions are analysed for the
case when the displacement rates and stresses depend on two variables
z=zy —ct,y=a3. In the limiting case, when the t—y -plot for a non-
linearly elastic material is the same as that for a perfect elastoplastic
material, a solution is constructed for the problem of refraction of
plane-polarized plane waves of pure shear in a non-linearly elastic
half-space. The results obtained are compared with the sclution constructed
earlier /1/ in which the system of Prandtl-Reuss equations was used to
study the refraction of pure shear waves in an elastoplastic half-space.
Selfsimilar problems in which the displacement rates and stresses
depend only on the ratio of the coordinates, were studied in /2-7/.

1. Let us consider the dynamic problem of the thecry of complex shear in a non-linearly
elastic medium. In a Cartesian coordinate system z; the displacement vectors u and displacement
rate vectors w are directed along the #; axis, and depend only on ;, % and the time t. Aall
components of the stress tensor except T, == 033(2;, 3, I} and T, = Oy {Ty, 23, 1) vanish. 1In this
case the equations of motion have the form

51’1 a7, M
T t 5 P =0 ah

Let us consider the selfsimilar solutions of (1.1) depending only on z = z; — ¢t, ¥ = Zy.
The relations of the non~linear theory of elasticity for antiplane deformations take the form

u=fPux T=fT)un T=V () + ) 1.2)

The relations of the deformation theory of plasticity /8/ are the same as (1.2) under an
active load ¥, > 0 and differ from them during unloading when %,<C 0. According to deformation
theory T and y are connected by a linear relation during the unloading.

From {(1.1) and (1.2) it follows that the displacement u satisfies the non-linear wave
equation

P (0 (0w 8 00) - 7 (9 2, 0,50+ 20t sty 6, gy (6, 0))— VOO, 22 =0 (1.3)
The last relation of (1l.2) will be satisfied identically if we put
Uz == ysinh, uy =7ycos0 1.9

Substituting these expressions into (1.3) and writing the resulting equation together
with the conditions of compatibility of deformations, we obtain the following systemof equations
for determining y and 0:

Y= (F (0) + ¥ () — pc?) sin 8 + vy (F (v) + 7/ (v) cos @ + (1.5)
0.7 (F(¥) — pc®) cos & — B9/ (¥) sin® =0
Y0080 — v, 8in® —0,ysin® —06,ycos80 =0

System (l1.5) is hyperbolic when
F@)o — % (W +71 () + ¥ (Wecfeos’d =r">0

The characteristics and the relations along them in this case have the form

dy (vf' (y) sin® + f (y) — pc?) = dz (vf' (v) sin B cos B 4= 1) 1.6)
doy (pe® cos®® — f (v)) + dy (pc® cos O 8in 6 = 7) =0 “.n
2. Let us consider a limiting case, when the ¥ — 9 plot for the non-linearly elastic
material is the same as that for a perfectly elastoplastic material, i.e. when the function
*pPrikl.Matem.Mekhan.,50,3,490-497,1986
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f(v) has a kink point. In this case we shall use the relations obtained to study the
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refraction of plane-polarized shear waves passing from an elastic half-space with parameters

Ui, Pry 8y = ]/m into an elastoplastic half-space (EPH) with parameters p,, py, a; = )/m, k.
In the case of the limit model of a non-linearly elastic body in the elastic domain f(y) =
p = comst, and in the plastic domain the yield condition %+ 7,2 = &* must hold. From this
it follows that f(y) = ky™.

Let a plane wave 0A (Fig.l) impinge on the boundary surface y=0. The equation of

the incident wavefront at any instant of time has the form ycos ¢, + zsin ¢; = —©; = const, and
we have the following relations behind the incident wavefront (@, is the angle of incidence)
T =1(0), i =12, w=w(0), w=ug= —cysind (2.9)

The equation of the reflected wavefront has the form ycos ¢, — zsin ¢, = wg = const. The
solution behind the reflected wavefront in the elastic half-space is obtained by combining
the solution (2.1) with the solution for the reflected wave, which has the form

=1 (0y), i =1,2, w=w,(w) 2.2)
The equation of the refracted wavefront at any instant of time has the form pyecose¢ +
z sin @ = @ = const. We have the following relations behind the refracted wavefront in E:
=1, i=1,2, w=wo) (2.3)
where (¢ the angle of refraction such that g, sin ¢ = a, sin ¢,).
From (1.1), (2.3) it follows that in the elastic domain behind the refracted wave

T, = Rey 8in B, T, = pyctg @ysin6 (2.4)
From (1.1}, (2.1), (2.2) we have
T (@) = — e (),  Tz{ey) = (— 1) puc7t ctg puw; (3) (2.5)
i=1,2

At the boundary y = 0 the normal stress 1T, and displacement rate w are assumed to be
continuous; this implies that

w (@) =w +ws, Tp() = pectg P (W, — wy) (2.6)

wy = wl(—I sin (pl), i=1,2

Here w(z) is the rate of displacement and t, (xr) is the stress at the boundary in the
EPH. Eliminating from Eq.(2.6) the function w, (— z sin @,;)y we obtain the boundary condition
for the EPH in the form

2w, (— zsin @) = w (2) — epy ™ tg i1, (2) (2.7)

Henceforth we shall assume that the function w, (®»,) is given, i.e. the profile and
intensity of the incident wave are known.

Let us consider the refracted wave in the EPH. The material is assumed to be at rest
w=u=+1 =1, =0, in front of the refracted wavefront OC, i.e. the material will be in the
elastic state near OC. We have y =0 on the line 0oC , and from (1.6), (1.7) we obtain

z—xYy=const, y(cos® —xsin0) =20 (2.8)
z + »xy = const, 7 (cos O + x sin 8) = const (2.9)
(x =VM*—1, M =ca,”’ is the Mach No.

The constant on the right-hand side of relation (2.8) is the same for all characteristics,
and should therefore be regarded as the integral of the equation of motion in the elastic
region. Using relations (2.8), we can write the condition at the boundary (2.7) in the form

2wy (— zsin@y) = — ¢y sin9(1+‘;+ttgg%> (2.10)
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From the integrals (2.8), (2.9) it follows that in the elastic domain, 8 has a constant
value, and y remains constant along the characteristics (2.9). This implies that the yield
point will be attended at once along the whole characteristic, provided that it is attained
at least one point.

The condition for attaining the yield point has the form

TR =R =, v = kA (2.11)
Substituting the second relation of (2.11l) into (2.4), we obtain
sin = £ sing (2.12)

Before continuing with the construction of the solution, we must decide on the choice of
sign in expressions (2.,11), (2.12). This can be done as follows. In the rectangular coordinate
system zOy the displacement u and displacement rate w in the EPH (Fig.l) for the problem in
question, and we have w = u =0 at the point 0. Consequently, when z<<(, we have duldz <
0 and relations (l.4) imply that ¥ and sin® are opposite in sign. We find from (2.4) that
7, < 0,73 < 0. At the point D, at which the yield point is first reached, we have T, = k sin 0,
Ty = k cos 0. Therefore in the elastic domain O = n 4+ ¢ and the plus sign should be chosen
in relation (2.11).

From (2.10)—(2.12) it follows that the material will remain elastic between the character-
istics OC and DE (Fig.l) until the following equality is reached at the same point D at the
boundary:

: k t,
2|un*(— zsingy) | = Vi (1+ :::tg?) (2.13)

The material is in the plastic state to the left of the line DE and Egs.(l1.6), (1.7) yield

dy (cose — AV—_—::“—) = —sinfdx (2.14)
I(0,8)— 2A Y w = const

dy(cosB+A|/ _:?";ﬁ):-—sine dx (2.15)

I@n+o)+2VTH=20V5, A=) 2E

b
L]

I(a’b)=S_]/—_TJ

Since on the line DE w = k (uyp,)"t, 8 = n + ¢ and the characteristics of (2.15) intersect
the line DE, the constant appearing in therelation along the characteristic of this family
is the same for all characteristics. Therefore, the second equation of (2.15) should be
regarded as an integral of the equations of motion in the plastic domain. From the integrals
(2.14), (2.15) we find, that along every characteristic of the family (2.14) & and w remain
constant, and from this it follows that the characteristics of (2.14) are rectilinear. Thus
we have

y (AV _:‘;ne ~— cos 9) — zsin 8 = const (2.16)
1(0,8)— 2A Y w = const

The characteristics (2.16) intersect the lines DE and are inclined to the z axis at an
angle ¥, for which

— sin @
gV = M +4-cos @ <tge

Thus we have for the equations of motion in the plastic domain on the line DE the Cauchy
problem. Solving this problem we determine w and @ between the characteristic DE in the
elastic domain, and the characteristic DF in the plastic domain where w = k (ug, pg) 7%, 0 =
.

Eliminating the function w from the boundary condition (2.7) with the help of the integral
(2.15), we obtain

2wy (— zsin@y) =W (8) — cp;* tg g1k cos O (2.47)
L)

W(6)=(§ QL VY

24y —sing = 2A

Let 6 = 0, be the root of this equation. Then from (2.15) we obtain the value of w =
W (6,) at the boundary y=0.
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The values of § and w remain constant along the line

8 .
¥ (A V"’:'%n'l—)gl" — €08 8,) —{(x —xn(0y))sin By = 0 (2.18)
(zy 1s the coordinate of the point on the boundary at which 0= 6;). The angle of inclination
of this characteristic to the r axis is connected with 8, by the relation

-1

— co8 9;) (2.19)

~5m6

tg ¥y == —sin 6; <A ]/

In order for the solution constructed to exist, it is necessary that the angle ¥; should
increase when the point N moves along the x axis, and that condition of loading should hold
in the plastic domain. The condition of lcading in the present case has the form

1 aw(® .
VT V= — oy w(‘) + otg 81 - "B‘ >0 (2.20

Using the integral (Z2.15), we can write the condition of loading in the form
a8 - YIS
2 (ctg by +[AY =sin8(I By, n+ ¢) + AV M) >0 (2.21)
i.e. the condition of loading will hold as long as @8,/dz > 0.

Differentiating relation (2.19) with respect to z, we find that the angle ¥, will
increase as we move along the & axis, provided that

[+ - (T IO+ o+VH)| >0 (2.22)

i.e. the condition that ¥, increases will hold as long as 88,/0z > 0.
Since 8, satisfies Eq.(2.17), differentiating the latter with respect to w, yields

242 Y Jsin Oy ==
. _ R
- —5,—3—‘; (1@ at+o)+VH+ V—sinB:tg os i;pf-)

From this we f£ind that the quantity 8, decreases as w, increases, and this implies that
88,/8z > 0 and conditions (2.21), (2.22) will hold as long as w, (@;) increases as @; increases,
We note that in this case the monotonicity of the functions appearing in (2.17) implies that
the latter will always have a unique solution when 8 & [n, n 4~ ¢l. When 0, decreases, it can
reach the value m when the characteristic (2.14) in the plastic domain becomes parallel to
the z axis. This will happen when the amplitude of the incident wave w; attains the value

o’ = _é“p’%f[cosm + par (i+ Vsing § ]/suup ) ] (223

Let this value be reached at the point 4, and let w,{w,) increase from that moment.
Then the line MP will become a characteristic and we shall have on it

6‘;‘:3!,1,'1=O, Tp=—K, W=,

+2y MY

Wy = ’S
* ]/'sm(p

The solution in EPH is determined by the boundary condition on the line OM. The line
MP is a stationary line of discontinuity on which the displacement rates undergo a jump,
and the dynamic conditions of compatibility on the surface of strong discontinuity imply
that the stress 73 is continuous on the line MP.

In the case when 1w (e)>w,", the condition of loading (2.21) holds also in the plastic
domain, but special attention should be given teo this condition when y=0, i.e. in the
slippage zone. The condition of loading holds on the stationary line of velocity discontinuity
when w, > w, where w, is the displacement rate in the elastic domain, and w, in the plastic
domain. From {(2.6) and (2.15) it follows that the condition of loading holds when

2wy (— zsin @) — k(Y maprcos i)t >, {2.24)
Thus, if the profile of the incident wave does not exceed w®, the condition of loading
will hold as long as the function w; (®,) increases, and unloading begins when the maximum
value of the profile has been passed. If the profile of the incident wave exceeds %, then
slippage (discontinuity of displacement) occurs in the corresponding zone at the boundary
separating two media. In this case the condition of loading will hold as long as the profile
exceeds w,’ and unloading will begin when the profile of the incident wave becomes smallexr



377

than w’

We note that the slippage zone represents, according to the terminclogy of the mechanics
of fracture, a slippage crack moving along the boundary separating two media. The displacement
u becomes strongly discontinuous in the slippage zone. The fact which appears to be essential
is, that the zone of slippage, its formation and development, are all described by the equations
of dynamics of elastoplastic media, without bringing in the physical laws of the mechanics
of fracture. The stresses and deformations at the crack tip are finite. Thus the model of
a perfectly elastoplastic body enables us, at least in the case in question, to carry out a
closed investigation of the development of the slippage cracks as surfaces of stationary
discontinuities.

It is interesting to compare the solution constructed with the
5 , results obtained in /1/, where the problem of the refraction of plane-
7 4 polarized, plane shear waves at the boundary separating the elastic
and elastoplastic half-spaces was solved using the system of Prandtl-
Reuss equations. When y<<ipg™ , the solutions basedon the model of a
perfectly elastoplastic body (the theory of plastic flows) are the
J same as those based on the limit model of a non-linearly elastic
. body (the deformation theory of plasticity), therefore the elastoplastic

’,;f”’7" boundaries are also the same in both cases. The difference appears
in the plastic zone, and this leads to different conditions of slippage.

7 #{ For a perfectly elastoplastic model the condition has the form /1/
g &4 P74
k ( [T 1
e = e (B (g gy )
Fig.2 VT 2y ap \ Paa: P+ mn

The dependence of the quantity w; = (2 ik tw® — (cos ¢)70) peay/(p1,) on the angle of refraction
¢ 1is shown in Fig.2, according to the perfect elastoplastic body model (curve 1) and the limit
model of the non-linearly elastic body (curve 2).

It should also be noted that in case of slippage the coordinates of the point of the body
zp, £rom which the unloading wave begins to propagate, obtained using the above models, are
alsc different.

3. Let us consider the propagation of the unloading wave (UW). We note that if the
unloading follows the model of a non-linearly elastic body, the angle @ increases as w(w)
increases, and the angle of inclination of the characteristics (2.14) to the z axis will
increase in the unloading zone and a shock UW will form.

Henceforth, we shall proceed according to the deformation theory of plasticity, i.e. we
shall assume that the unloading takes place linearly and PL is the line separating the plastic
domain from the unloading zone. The method of determining the initial velocity of UW used in
/1/ can be generalized and used to find the velocity of the UW at any of its points.

The relations (2.14), (2.15) which hold in the plastic domain, can be written in the form

T 9
—_ d6 P L ¥y
4A‘|fw= § m+2]fﬁ!——§ _"’"'V-:m —fa( <, 't) 3.1)
-] a Ty a8 .
. e _ 2/ W .
2§ v —sin® =f'( [N .1:)+ og Y —sin@ VM @5

{cp=V —sin8sin 8 (AYw — ¥V “sin Beos )1 is the velocity of plastic waves.
The boundary condition (2.17) has the following form at the boundary:
-+

. 1 do
2wy (— z 8in @) == 1647 [ S
I

Y —sinB(z, V)

6.9

+2|f?|?—f,(——z)]
'f;;'tg@xkcosﬁ(b U]

Differentiating Eqgs.(3.2) and (3.3) with respect to z with y=0, we obtain a system of
egquations for determining 48 (z, 0)/dz, f' (—z), and the system vields

f (—z) = 2R, (;—x sin @) F (8 (z, 0)) 3.5
F8(z,0) = [Wﬂ 8 (z, 0)) — -:Tl-tg Pk sind (z, 0) X
K+

20
Y —sinB(z, [1]) +2H

Ry (—z sin q,) = —sin @u,’ (~z sin @) when x> %p

Y —sinb{(z, 5)]—1, Fi @z, = §
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Differentiating Eqg.(3.2) with respect to zr with y=y(z), i.e. on the UW, we obtain

a0 38 o
Gt ey = (1""“9—} Fa(z, y(a))

By(—zsing) F(8(z,0)) )/ —sn®

ooy &) = = Ry (— ssin o) F (0.2, 0) Fs (0 (2, 911 9 (5] — 1
3(YwAsin8—)/ —sinb) ¥ ()

B vy =— =Hom et B

o duln)

- dx

Similarly, from (1.6}, (1.7}, {(2.7) we find the following relations hold in the unloading
zone (¢, is the velocity of elastic waves):

D, = — 20.a%, w, O_ == 201, (3.5)

e S L Gl
fel@) = 2R,y (—xsmqn) gda: — fy (z}{(g — d)sin @

(g +djsing
Ry (~zxsin ¢;) == —sin @’ (—z sm tp,) when 2 < zp d=puycosq
£ = 0ya; 008 @y, cp = — (M3 — )™t

We assume that on the UWy = y (z) the stresses and displacement rates are continuous, and
in this case we have

n+g
w2 (¢ @ v .
®y=— gax (05 Vot +2Y M1 ( 3}) @.5

= 2¢k cos 8

Differentiating the system of Eqgs.(3.6) with respect to z and eliminating the guantities
9/oz + c*30/dy, fy’' (y (z)ep — z)  from the equations obtained, we obtain

I (z-{-—”—‘?—)(i - )-{-fz’ (z— y,(,:) )(1—%)= 3.7
ke me(z,mn(i— )t

T TR

— 2¢cksin@ (1 --"“) Fa{z, y(2))

o (24 E2) = [2Resin g e — 1 (o (2) 3.9
]
(g — d) sin tp][(g + d) sing]™t

The last equation of (3.9) was cbtained from (3.5) for f/(z) by changing the argument.

The system of Egs.{3.7)-(3.9) obtained represents a system of differential equations
with divergent argument, for determining the UW y = y (x). It can be solved by numerical methods
with the following initial conditions:

g =0, ¥z =a% flz)=hHh A(z)=hH) hiz)="
1 (zp) =1

Here ¢,* is the initial velocity, UW, and the algorithm for its determination is known
/1, 9/. Since the stresses and displacement rates are continuous on UW, therefore the
quantities f, f;!, /. /¥ can be found from the solution constructed above in the region of
plastic loading.

Moreover, the system of Egs.(3.7)~{3.9) can be used to determine the velocity of UW at

any of its points (z, y, (). Eliminating the function f/{(z 4+ y(z)ee) from the Egs.(3.7)-(3.9),
we obtain

*\ Faz, k
G(eH) = (1_7;-) _;/%s_ﬁzeﬁ ( :: Fy@ (2, 1) — (3.10)

—— .
zc;:siney’—‘sine) — 3 (z~--”c(’) ) (1_5—)
L4 3
We will assume that the UW is constructed from the data of an arbitrary point at which
the velocity of UW is sought. Thus the quantity y=y(z) dis known and (3.10) is a linear
equation for determining c¢*. Therxefore, the UW can be constructed by determining e¢* from
(3.10) at a sequence of points beginning with z,, and setting up the corresponding segments
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of the UW by means of the rectilinear segments whose angle of inclination to the z axis is
given by ¢*. The value of the function j/ (z — y(z)/c,), necessary for constructing each successive
segment of the UW, is found with help of the relations (3.5}, (3.8) from the results of
constructing the preceding segments,

Using Egs. (3.2}, (3.5), we can write the function fa{z —y {z)/e,) in the form

fa (x 4 y)(e/eg) == —pg (4A3%,)72 Fy2 (B (z, 0)) — ckcos § (3.11)

Differentiating (3.11) with respect to z' and remembering that a6/dz<0. in the unloading
zone, we find that f/(z — (z — zp) ¢plc) >0 in this zone. Therefore, from (3.10) it follows that
G {5} <0, G (e} >0, which means that the root of Eg.(3.10)¢* satisfies the condition |ep|<e <
le¢el. Thus we have shown that the velocity of UW at any of its points is not less than the
rate of propagation of the plastic waves, and does not exceed the rate of propagation of
elastic waves, Therefore the velocity of UW and hence the UW itself, is determined uniquely
at every point.

The method of characteristics /9/ can be used instead of the methods given here in
constructing the UW.
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